2022.9.7 JASIS2022 新技術説明会

オリゴ核酸分析における HPLC分析条件の検討例のご紹介

株式会社大阪ソーダ

TEL: 06-6110-1598 FAX: 06-6110-1612 E-mail: silica@osaka-soda.co.jp URL: https://sub.osaka-soda.co.jp/HPLC/

Something Better with Chemicals

デオキシリボ核酸(DNA)及びリボ核酸(RNA)の総称 塩基、糖、リン酸からなるヌクレオチドがホスホジエステル結合で連なり、あらゆる生物 の細胞核内に存在する生体高分子

デオキシリボ核酸(DNA)及びリボ核酸(RNA)の総称 塩基、糖、リン酸からなるヌクレオチドがホスホジエステル結合で連なり、あらゆる生物 の細胞核内に存在する生体高分子

- > 核酸医薬品、その不純物について
- > 不純物の分離条件検討
- > 合成オリゴ核酸の不純物について

|承認された核酸医薬品(2022年6月時点)

商品名	一般名	分類	化学修飾等	DDS等	承認国/年	標的	適応	投与
Vitravene	fomivirsen	アンチセンス	PS (full)	Naked	米国 1998 欧州 1999	CMV IE2 mRNA	CMV性網膜炎 (AIDS患者)	硝子体内
Macugen	pegaptanib	アプタマー	2'-OMe, 2'-F	Naked (PEG-conjugate)	米国 2004 欧州 2006 日本 2008	VEGF165 (タンパク質)	滲出型 加齡黄斑変性症	硝子体内
Kynamro	mipomersen	アンチセンス	PS (full) 2'-MOE	Naked	米国 2013	ApoB-100 mRNA	ホモ接合型家族性高コレステロール血症	皮下
Exondys 51	eteplirsen	アンチセンス	モルフォリノ核酸	Naked	米国 2016	Dystrophin pre-mRNA	デュシェンヌ型 筋ジストロフィー	静脈内
Spinraza	nusinersen	アンチセンス	PS (full) 2'-MOE	Naked	米国 2016 欧州 2017 日本 2017	SMN2 pre-mRNA	脊髓性筋萎縮症	髓腔内
HEPLISAV-B	(^注 CpG1018)	CpGオリゴ	PS (full)	Naked	米国 2017 欧州 2019	TLR9 (タンパク質)	B型肝炎 (予防)	筋肉内
Tegsedi	inotersen	アンチセンス	PS (full) 2'-MOE	Naked	米国 2018 欧州 2018	TTR mRNA	遺伝性ATTR アミロイドーシス	皮下
Onpattro	patisiran	siRNA	2'-OMe	Lipid nanoparticle	米国 2018 欧州 2018 日本 2019	TTR mRNA	遺伝性ATTR アミロイドーシス	静脈内
Waylivra	volanesorsen	アンチセンス	PS (full) 2'-MOE	Naked	欧州 2019	ApoCIII mRNA	家族性高力イロミクロン血症	皮下
Givlaari	givosiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	米国 2019 欧州 2020 日本 2021	ALAS1 mRNA	急性肝性 ポルフィリン症	皮下
Vyondys 53	golodirsen	アンチセンス	モルフォリノ核酸	Naked	米国 2019	Dystrophin pre-mRNA	デュシェンヌ型 筋ジストロフィー	静脈内
Viltepso	viltolarsen	アンチセンス	モルフォリノ核酸	Naked	日本 2020 米国 2020	Dystrophin pre-mRNA	デュシェンヌ型 筋ジストロフィー	静脈内
Oxlumo	lumasiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	米国 2020 欧州 2020	HAO	原発性 高シュウ酸尿症 I 型	皮下
Leqvio	inclisiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	欧州 2020 米国 2021	PCSK9 mRNA	高コレステロール血症 混合型脂質異常症	皮下
Amondys 45	casimersen	アンチセンス	モルフォリノ核酸	Naked	米国 2021	Dystrophin pre-mRNA	デュシェンヌ型 筋ジストロフィー	静脈内
Amvuttra	vutrisiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	米国 2022	TTR mRNA	遺伝性ATTR アミロイドーシス	皮下

核酸医薬品の分類

アンチセンス	9	56%
アプタマー	1	6%
CpGオリゴ*	1	6%
siRNA	5	31%
合計	16	

アンチセンスに施された化学修飾等

PS (full)	1
PS (full), 2'-MOE	4
モルフォリノ核酸	4
合計	9

 ・
 ^注CpG1018は、B型肝炎ウイルスワクチン(HEPLISAV-B) にアジュバントとして添加されたオリゴ核酸(CpGオリゴ)である。ここでは、CpG1018を核酸医薬の一

 種とみなして本表に組み込んだ。

 上記のほかに、オリゴ核酸で構成される既承認医薬品としてDefibrotide(ブタ腸粘膜から単離したDNAを脱重合した製品)があるが、化学合成品ではないため、 本表では除外している。

出典(国立医薬品食品衛生研究所遺伝子医薬部ホームページ)

不純物(類縁物質)

主として

- > short-mer(鎖長不足のn-1体など)のオリゴ核酸
- ≻ PS→PO変換体を含むオリゴ核酸

その他考えられるものとして

- ▶ 合成原料に由来する保護基が残ったオリゴ核酸
- ▶ 脱プリンを生じたオリゴ核酸
- ≻ n+1体のオリゴ核酸

イオンペア逆相では

分離が難しいと言われてい

る中、某メーカーからADME

カラムにて良好な分離が

得られたとの情報を入手

|検討したオリゴ核酸の構造(1)

Oligothymidine (DNA)

Sequence

5'-T^T^T^T^T^T^T^T^T^T^T^T^T3'	DNA 15 mer, 12PS, 2PO
5'-T^T^T^T^T^T^T^T^T^T^T^T^T^T^3'	DNA 15 mer, 13PS, 1PO
5'-T^T^T^T^T^T^T^T^T^T^T^T^T^T^T^3'	DNA 15 mer, All PS

^ = Phosphorothioated

|検討したオリゴ核酸の構造(2)

5'-T(m)^5(m)^A(m)^5(m)^T(m)^T(m)^T(m)^5(m)^A(m)^T(m)^A(m)^A(m)^T(m)^G(m)^5(m)^T(m)G(m)G(m)-3'	18 mer, 15PS, 2PO
5'-T(m)^5(m)^A(m)^5(m)^T(m)^T(m)^T(m)^5(m)^A(m)^T(m)^A(m)^A(m)^T(m)^G(m)^5(m)^T(m)G(m)^G(m)-3'	18 mer, 16PS, 1PO
5'-T(m)^5(m)^A(m)^5(m)^T(m)^T(m)^T(m)^5(m)^A(m)^T(m)^A(m)^A(m)^T(m)^G(m)^5(m)^T(m)^G(m)^G(m)-3'	18 mer, All PS

^ = Phosphorothioated

Sequence

|検討したオリゴ核酸の構造(3)

^ = Phosphorothioated

オリゴチミジン 他社比較 ~TEAA~

オリゴチミジン 他社比較 ~DBAA~

オリゴ核酸に含まれる不純物

不純物(類縁物質)

主として

> short-mer(鎖長不足のn-1体など)のオリゴ核酸

> PS→PO変換体を含むオリゴ核酸

その他考えられるものとして

FLPとの分離度1.5以上 (完全分離)が同時に達成 される分析条件の検討

- > 合成原料に由来する保護基が残ったオリゴ核酸
- ▶ 脱プリンを生じたオリゴ核酸
- ≻ n+1体のオリゴ核酸

代表的なイオンペア逆相クロマトグラフィー

100 mmol/L TEAA(酢酸トリエチルアミン) / アセトニトリル

・逆相クロマトグラフィーカラムに親水性の高いオリゴ核酸を保持させる

ポリアニオンであるオリゴ核酸と疎水性対を形成するカチオン種

15 mmol/L TEA, 400 mmol/L HFIP / メタノール

•Apffel らがオリゴ核酸混合物に対する新規分析法の報告¹⁾

・UV(分離確認)とMS(感度確認)を組み合わせた検討

1) A. Apffel et al, Anal. Chem. 1997, 69, 1320.

代表的なイオンペア逆相クロマトグラフィー

|オリゴ核酸の分析 ~TEAA~

Something Better with Chemicals

|オリゴ核酸の分析 ~DBAA~

|オリゴ核酸の分析 ~DHAA~

アミン種検討まとめ

		TEAA	DBAA	DHAA
RNA	Rs 1PO-FLP	1.71	1.78	1.25
	Rs n-1-FLP	-	1.16	1.35
Oligothymidine	Rs 2P0-1P0	2.18	1.71	1.47
	Rs 1PO-FLP	2.90	2.54	2.06
Nusinersen	Rs 2P0-1P0	-	1.41	-
	Rs 1PO-FLP	-	1.27	-

酢酸(弱酸)からトリフルオロ酢酸(強酸)に変える ↓ 溶液中のプロトン供給源が増加 (ジブチルアミンカチオンが多く生成) ↓ オリゴ核酸との相互作用に変化が起こらないか?

|オリゴ核酸の分析 ~DBA-TFA~

Something Better with Chemicals

【オリゴ核酸の分析 ~DBA-TFA-HFIP~

Something Better with Chemicals

ここまでのまとめ

CAPCELL PAK ADME-HR

		DBA-AA	DBA-TFA	DBA-TFA-HFIP
	Rs 1PO-FLP	1.78	1.70	1.71
KINA	Rs n-1-FLP	1.16	1.14	1.30
Oligathymidina	Rs _{2PO-1PO}	1.71	1.89	1.70
Ongothymnume	Rs 1PO-FLP	2.54	2.61	2.37
Nucinaraan	Rs _{2PO-1PO}	1.41	1.28	1.42
Nusinei sen	Rs 1PO-FLP	1.27	1.22	1P0体及びn-1体
CAPCELL PAK C18 MGI				との同時公離
CAPCELL PAP	K C ₁₈ MGII			
CAPCELL PAP	C ₁₈ MGII	DBA-AA	DBA-TFA	DBA-TFA-HFIP
CAPCELL PAR	C C ₁₈ MGII Rs _{1PO-FLP}	DBA-AA	DBA-TFA 1.88	DBA-TFA-HFIP 1.96
CAPCELL PAR	C C ₁₈ MGII Rs _{1PO-FLP} Rs _{n-1-FLP}	DBA-AA	DBA-TFA 1.88 1.47	DBA-TFA-HFIP 1.96 1.66
CAPCELL PAR RNA	C ₁₈ MGII Rs _{1PO-FLP} Rs _{n-1-FLP} Rs _{2PO-1PO}	DBA-AA	DBA-TFA 1.88 1.47 1.67	DBA-TFA-HFIP 1.96 1.66 1.56
CAPCELL PAR RNA Oligothymidine	C ₁₈ MGII Rs _{1PO-FLP} Rs _{n-1-FLP} Rs _{2PO-1PO} Rs _{1PO-FLP}	DBA-AA	DBA-TFA 1.88 1.47 1.67 2.52	DBA-TFA-HFIP 1.96 1.66 1.56 2.26
CAPCELL PAR RNA Oligothymidine	C ₁₈ MGII Rs _{1PO-FLP} Rs _{n-1-FLP} Rs _{2PO-1PO} Rs _{1PO-FLP} Rs _{2PO-1PO}	DBA-AA	DBA-TFA 1.88 1.47 1.67 2.52 1.52	DBA-TFA-HFIP 1.96 1.66 1.56 2.26 1.71

| 強酸(DFA or TFA)使用移動相について

調製方法:DFA or TFA(酸)を加えた後、DBA(アミン)を滴下。その後HFIPを加えた。

	DBA (mmol/L)	DFA (mmol/L)	HFIP (mmol/L)	酸 (pH)	アミン (pH)	HFIP (pH)	備考
	50	40	30	1.62	10.60	9.03	クリアな溶液となった。DBA 油滴の消失に時間がかかる。
()	50	45	30	1.61	10.34	8.76	クリアな溶液となった。HFIP を加えて分析に使用。
	50	50	30	1.54	4.87		酸の量が多く pH が低い。移動相として使用せず。
	50	55	30	1.51	2.79		酸の量が過剰で pH が低すぎる。移動相として使用せず。
	100	80		1.47	10.55		DBA の油滴が消滅しない。酸が足りないと思われる。
	100	90	30	1.43	10.23	9.03	クリアな溶液となった。HFIP を加えて分析に使用。
	100	100	30	1.39	9.98	8.76	クリアな溶液となった。HFIP を加えて分析に使用。
	100	110		1.38	3.01		酸の量が過剰で pH が低すぎる。移動相として使用せず。
	DBA (mmol/L)	TFA (mmol/L)	HFIP (mmol/L)	酸 (pH)	アミン (pH)	HFIP (pH)	備考
	50	35	30	1.53	10.75	9.23	クリアな溶液となった。
	50	40	30	1.47	10.44	8.85	クリアな溶液となった。分析に使用。
	50	45	30	1.44	10.11	8.53	クリアな溶液となった。分析に使用。
	50	50		1.39	2.89		酸の量が過剰で pH が低すぎる。移動相として使用せず。
	100	70		1.29	10.56		DBA の油滴が消滅しない。酸が足りないと思われる。
(B)	100	80	30	1.26	10.32	9.19	クリアな溶液となった。HFIP を加えて分析に使用。

90 30 1.25 10.17 8.97 クリアな溶液となった。HFIP を加えて分析に使用。 100 1.14 1.95 酸の量が過剰で pH が低すぎる。移動相として使用せず。

100

100

R

| 強酸(DFA or TFA)使用移動相の検証結果

[HPLC Conditions]	
Column	:CAPCELL PAK C18 MGII S3;2.0 mm i.d. x 150 mm
Mobile phase	: A) XXX mmol/L DBA, YYY mmol/L acid, 30 mmol/L HFIP
-	B) XXX mmol/L DBA, YYY mmol/L acid, 30 mmol/L HFIP in 50 vol% CH ₃ CN
	B 5 %/30 min Gradient
Flow rate	:200 μL/min
Temperature	: 60 °C
Detection	: UV 270 nm
Sample dissolved in	: 10 mmol/L Tris-HCL buffer (100 ug/mL each)

DBA (mmol/L)	DFA (mmol/L)	HFIP	R s _{n-1-FLP}	Rs 1PO-FLP	備考
			1 70	1.01	
50	45	30	1./9	1.91	
100	90	30	1.59	1.99	
100	100	30	1.51	1.93	

	DBA	TFA	HFIP			備老
(mmol/L)	(mmol/L)	(mmol/L)		//OTPO-FLP	Сл. ени
	50	40	30	1.85	2.03	
	50	45	30	1.66	1.97	
	100	80	30	2.05	2.36	保持時間の再現性が低い
	100	90	30	1.92	2.13	

| グラジェント初期%B及び分離の関係

| グラジェント初期%B及び分離の関係

検討した分析条件

アミン(イオン対)のスクリーニング

[HPLC Conditions]	
Column	:CAPCELL PAK C18 MGII S3;2.0 mm i.d. x 150 mm
Mobile phase	: A) 15 mmol/L Amine, 50 mmol/L HFIP
	B) 15 mmol/L Amine, 50 mmol/L HFIP in 50 vol% CH_3CN or CH_3OH
	B 5 %/30 min Gradient
Flow rate	:200 μL/min
Temperature	: 60 °C
Detection	: UV 270 nm
Sample dissolved in	: 10 mmol/L Tris-HCl buffer (100 μ g/mL each)

移動相AのpH(HFIP含有)

DHAの溶解性確認

TEA	DIPEA	DBA	n-HA	DHA (mmol/L)	H ₂ O	50 vol% CH₃CN	50 vol% CH₃OH
15 mmol/L pH 8.95	15 mmol/L pH 9.01	15 mmol/L pH 8.93	15 mmol/L pH 8.92	100	×	×	×
				50	×	×	×
				25	×	×	×
				10	×	×	×
				5	×	Δ	×
				1	×	0	×

RNA6種混合物を用いたスクリーニング結果

| グラジェント初期%B及び分離度の関係

| グラジェント初期%B及び分離の関係

|HFIP濃度の影響|

|他オリゴへの適用

| 不純物分離の推奨移動相条件

RNA混合物の分析

RNAの不純物分析

Oligothymidine混合物の分析

Oligothymidineの不純物分析

Nusinersen混合物の分析

Nusinersenの不純物分析

イオン対逆相を用いたオリゴ核酸の不純物分離

PO変換体 保持力の影響を受けにくい n-1体 保持力を増加することで向上

オリゴ核酸に含まれる不純物(類縁物質)の分離条件を 検討しました。

実際、塩基配列・目的毎に最適化は必要です。

本内容が研究開発・品質管理に必要な分析、または 製造時における精製工程のご参考になれば幸いです。

お問合せ先 株式会社 大阪ソーダ ヘルスケア事業部 営業部 クロマト営業課 TEL:06-6110-1598 e-mail:silica@osaka-soda.co.jp

